CHAPTER 12

LPP

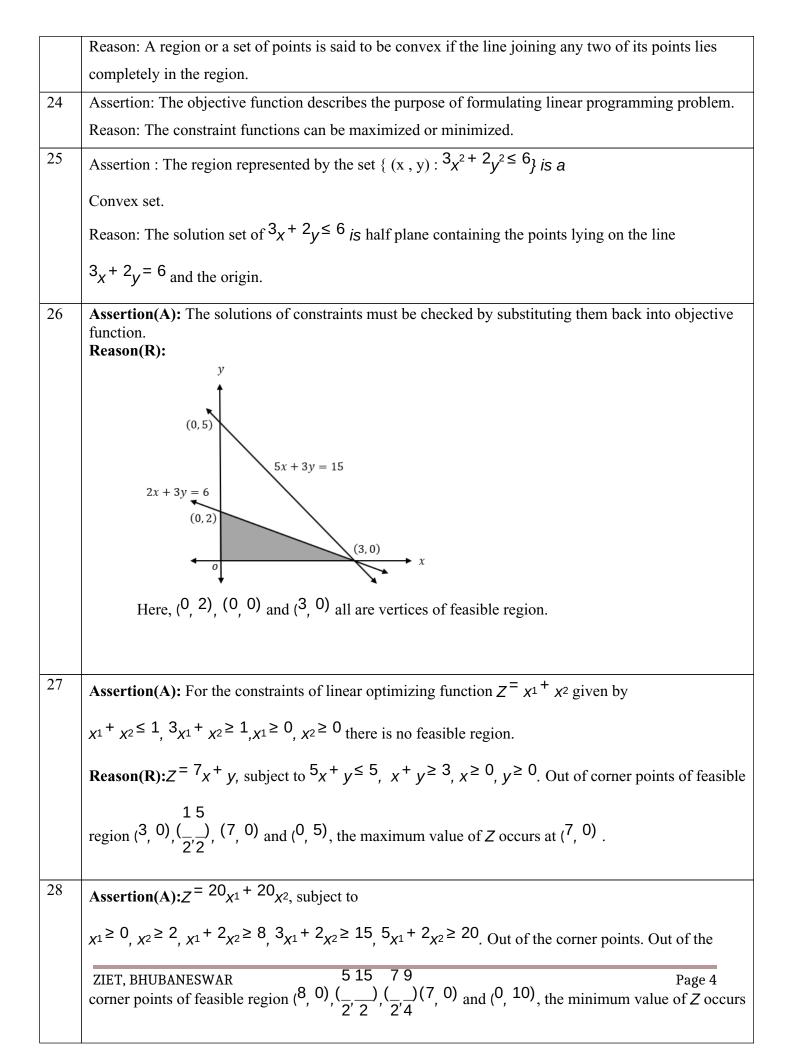
ASSERTION REASONING QUESTIONS

Q	Questions
No	In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choice as A) Assertion and reason both are correct statements and reason is correct explanation for assertion.
	B) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
	C) Assertion is correct statement but reason is wrong statement.
	D) Assertion is wrong statement but reason is correct statement.
1	Assertion (A): Feasible region is the set of points which satisfy all of the given constraints.
	Reason (R): The optimal value of the objective function is attained at the points on X-axis only.
2	Assertion (A): It is necessary to find objective function value at every point in the feasible region to find optimum value of the objective function.
	Reason(R):For the constrains $2x+3y \le 6$, $5x+3y \le 15$, $x \ge 0$ and $y \ge 0$ corner points of the feasible region are (0,2), (0,0) and (3,0).
3	Assertion (A):If an LPP attains its maximum value at two corner points of the feasible region then it attains maximum value at infinitely many points.
	Reason (R): if the value of the objective function of a LPP is same at two corners then it is same at every point on the line joining two corner points
4	Assertion (A): The region represented by the set $\{(x,y): 4 \le x^2+y^2 \le 9\}$ is a convex set. Reason (R): The set $\{(x,y): 4 \le x^2+y^2 \le 9\}$ represents the region between two concentric circles of radii 2 and 3.
5	Assertion: Bounded region of constraint lies in the first quadrant of $x+y\leq 20,3x+2y\leq 48, x\geq 0, y\geq 0$ Reason: $x\geq 0, y\geq 0$ are non-negative constraints.
6	Assertion: Objective function is the linear function. Reason: it can be maximized or minimized.
7	Assertion: Linear Programming Problems help to solve the problem of manufacturing and diet problems Reason: LPP may use in traffic signal problems
8	Assertion: The set of all feasible solution of a LPP is a convex set. Reason: Bounded region form a polygon whose each interior angle would be less than 180 ⁰ .
9	Assertion: A LPP admits unique optimal solution. Reason: The solution set of the inequation $2x+y>5$ is open half plane not containing the origin.
10	Assertion (A) Maximum value of $Z^{=11}x^{+7}y$, subject to constraints
	$2_{x}^{+}y \leq 6_{,x} \leq 2_{,x}^{-} \geq 0_{,y}^{-} \geq 0_{\text{will be obtained at }(0,6)}$.
11	Reason (R)In a bounded feasible region, it always exist a maximum and minimum value.
11	

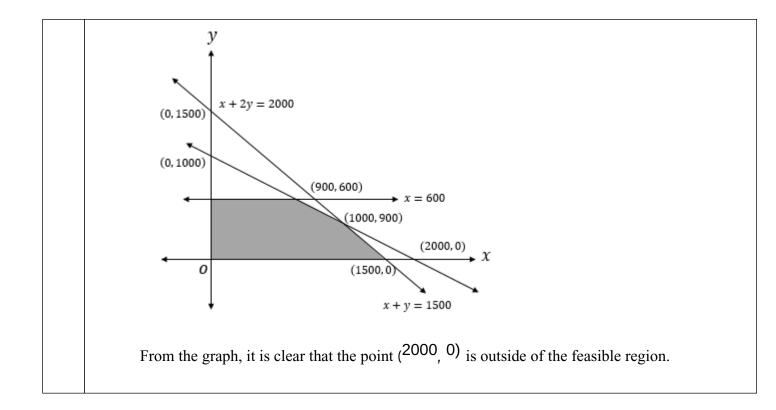
	Assertion (A)The linear programming problem, maximize $Z^{=2}x^{+3}y$ subject to constraints
	$x^{+}y^{\leq 4}, x^{\geq 0}, y^{\geq 0}$
	It gives the maximum value of Z as 8. Reason (R)To obtain maximum value of Z, we need to compare value of Z at all the corner points of the feasible region.
12	Assertion (A) For an objective function $= 4_x + 3_y$, corner points are (0,0), (25,0), (16,16) and
	 (0,24) . Then optimal values are 112 and 0 respectively. Reason (R) The maximum or minimum values of an objective function is known as optimal value of LPP. These values are obtained at corner points .
13	Assertion (A) Objective function $Z = 13_X - 15_y$, is minimized subject to constraints
	$x^{+}y^{\leq 7}$, $2_{x}^{-}3_{y}^{+}6 \geq 0$, $x^{\geq 0}$, $y^{\geq 0}$ occur at corner point (0,2).
	Reason (R) If the feasible region of the given LPP is bounded, then the maximum or minimum values of an objective function occur at corner points.
14	Assertion (A) Maximize $Z^{=3}x^{+4}y$, subject to constraints $:x^{+}y^{\leq 1}$, $x^{\geq 0}$, $y^{\geq 0}$. Then
	maximum value of Z is 4. Reason (R) If the shaded region is not bounded then maximum value cannot be determined.
15	Consider the graph of the constraints stated by linear inequations $5x + y \le 100$, $y + x \le 60$, and x,
	$y \ge 0.$
	(0,100)
	(0,60) (10,50) (20,0) (60,0) (20,0) (20,0) (10,50)
	Assertion: (25,40) is infeasible solution of the problem Reason: Any point which lies in feasible region is infeasible solution
16	Assertion: Maximum value of $Z = 11x + 5y$ subject to constraints $3x + 2y \le 25, x + y \le 10,$
	$x, y \ge 0$, occurs at corner point $(\frac{25}{3}, 0)$
	Reason: If the feasible region of given LPP is bounded then the maximum and minimum value occurs at the corner points
17	

Assertion: The maximum value of Z = 4x + y subject to the constraints $x + y \le 50$, $3x + y \le 90$, x, $y \ge 0$ is 120 Reason: If the feasible region of given LPP is bounded then the maximum and minimum value occurs in infeasible region Assertion: The maximum value of Z = 5x + 3y subject to the constraints stated by linear inequations 18 $2x + y \le 12, 2y + 3x \le 20$, and $x, y \ge 0$ is at (4,4) Reason: If the feasible region of given LPP is bounded then the maximum and minimum value occurs at the corner points 0,12) (0, 10)(4,4) o (6,0)Assertion: The Maximum value of Z = 11x + 7y, subject to the constraints $2x + y \le 6$, $x \le 2$, $x, y \ge 0$, 19 occurs at corner point (0,6)Reason: If the feasible region of given LPP is bounded then the maximum and minimum value occurs at the corner points. Assertion: Graphical method is not suitable for solving all linear programming problem 20 Reason: Graphical method is applicable only in case of linear programming problems of two variables. Assertion: The maximum value of $Z = 5_x + 3_y$, satisfying the conditions 22 $x \ge 0, y \ge 0$ and $5x + 2y \le 10$ is 15. Reason: A feasible region may be bounded or unbounded . Assertion: Shaded region represented by $2_x + 5_y \ge 80$, $x + y \le 20$, $x \ge 0$, $y \ge 0$ is 23 20/3, 40/3) (40, 0) (20. ŏ)

ZIET, BHUBANESWAR



	7 9 at $(\frac{1}{2}, \frac{1}{4})$.				
	Reason(R):				
	Corner Points	$Z = 20_{X^1} + 20_{X^2}$			
	(8 _, 0)	160			
	5 15	125			
	(<u>7</u> , <u>4</u>)				
	2 7				
	7 9	115 minimum			
	$(\frac{1}{2},\frac{1}{4})$				
	2 4				
	(⁰ , 10)	200			
	(0, 20)	200			
29	1. Assertion(A): For the constraints of an LPP given by $x^{+2}y^{\leq 2000}$, $x^{+}y^{\leq 1500}$, $y^{\leq 600}$,				
	and $x, y \ge 0$, the points (1000, 0), (0, 500), (2, 0) _{lie} in the positive bounded region, but point				
	(2000, 0) does not lie in the positive bounded region.				
		-			
	Reason(R):				



ANSWERS

Q No	Answer
1	С
2	D
3	Α
4	D
5	А
6	В
7	B C
8	А
9	А
10	В
11	D
12	A
13	A
14	С
15	С
16	А
17	С
18	A C C A C A A
19	А

21	А
22	А
23	D
24	С
25	В
26	D
27	В
28	Α
29	A

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : TINSUKIA REGION